Bō Shuì

ChartMimic: Evaluating LMM’s Cross-Modal Reasoning Capability via Chart-to-Code Generation

Chufan Shi, Cheng Yang, Yaxin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran Xu, Xinyu Zhu, Siheng Li, Yuxiang Zhang, Gongye Liu, Xiaomei Nie, Deng Cai, and Yujiu Yang

Find the Project Homepage here.

The real-world example. LMMs assist scientists and researchers in understanding, interpreting and creating charts during the reading and writing of academic papers. These models serve as assistants that enhance the comprehension and presentation of data in scholarly communications.

Abstract

We introduce a new benchmark, ChartMimic, aimed at assessing the visually-grounded code generation capabilities of large multimodal models (LMMs). ChartMimic utilizes information-intensive visual charts and textual instructions as inputs, requiring LMMs to generate the corresponding code for chart rendering.

ChartMimic includes 4,800 human-curated (figure, instruction, code) triplets, which represent the authentic chart use cases found in scientific papers across various domains (e.g., Physics, Computer Science, Economics, etc). These charts span 18 regular types and 4 advanced types, diversifying into 191 subcategories.

Furthermore, we propose multi-level evaluation metrics to provide an automatic and thorough assessment of the output code and the rendered charts. Unlike existing code generation benchmarks, ChartMimic places emphasis on evaluating LMMs' capacity to harmonize a blend of cognitive capabilities, encompassing visual understanding, code generation, and cross-modal reasoning.

The evaluation of 3 proprietary models and 11 open-weight models highlights the substantial challenges posed by ChartMimic. Even the advanced GPT-4o, InternVL2-Llama3-76B only achieve an average score of 82.2 and 61.6, respectively, indicating significant room for improvement. We anticipate that ChartMimic will inspire the development of LMMs, advancing the pursuit of artificial general intelligence.

The pipeline of ChartMimic.

Read more in the Project Homepage.

ᐸ Back to home